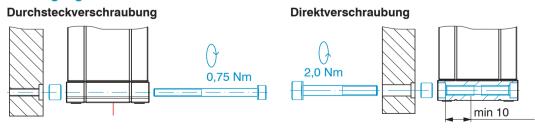

Befestigung Sensor

Die Sensoren der Serie optoNCDT 5500 sind optische Sensoren, mit denen im μ m-Bereich gemessen wird. Achten Sie bei Montage und Betrieb auf sorgsame Behandlung!

- Befestigen Sie den Sensor ausschließlich an den vorhandenen Durchgangsbohrungen (Befestigungsbohrungen) auf einer ebenen Fläche. Klemmungen jeglicher Art sind nicht gestattet.
- Montieren Sie den Sensor mit 2 Schrauben M4 oder über die Durchgangsbohrungen für M3 mit den Schrauben aus dem Zubehör.

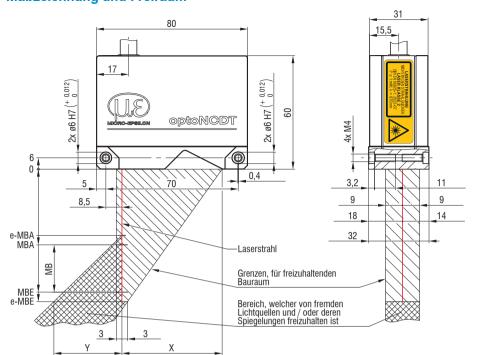
Messbereich, Messbereichsanfang

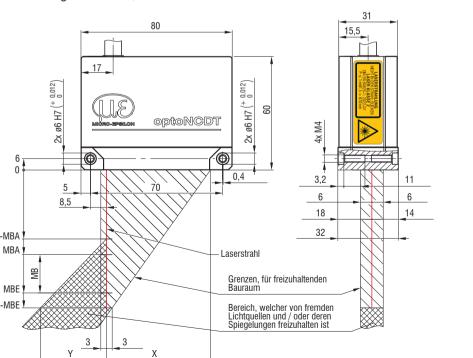

e-MBA Reserve Messbereichsanfang MBA Messbereichsanfang MBE Messbereichsende

e-MBE Reserve Messbereichsende

MBM Messbereichsmitte

Die Digitalwerte gelten für Abstandswerte ohne Nullsetzung bzw. Masterung.


Befestigung


M3 x 40; ISO 4762, A2-70

M4; ISO 4762, A2-70 Einschraubtiefe min. 10 mm

Maßzeichnung und Freiraum

Maßzeichnung ILD5500-10/25

Maßzeichnung ILD5500-100/200, Abmessungen in mm

MB	10	25	100	200
e-MBA	27,5	35	55	70
MBA	30	40	70	100
MBM	35	52,5	120	200
MBE	40	65	170	300
e-MBE	42,5	72,5	205	370
X Standard-MB	49	52	58	59
X mit Reserve-MB	49	53	59	60
Y Standard-MB	17	32	64	92
Y mit Reserve-MB	26	51	106	167

Pin Adernfarhe Frläuterung

Abmessungen in mm

Anschlussbelegung

ignai	PIN	PC/SC5500-x	Eriauterung			
+	24	Rot	Spannungsversorgung (12 30 VDC), typisch 24 VDC			
iND	17	Blau	Bezugsmasse für Versorgung, Sync, RS422			
nalogausgang	12	Koax-Innen	Strom 4 20 mA Spannung 0 5 VDC 0 10 VDC			
GND	21	Koaxialschirm	Bezugspotential für Analogausgang			
ync+	5	Grau-rosa	Synchronisation oder Triggerung; Symmetrisch RS422- Pegel, Abschlusswiderstand (120 Ohm), Richtung über Software schaltbar, nicht galvanisch getrennt; Alternativ: Referenzimpuls Encodereingang			
ync -	2	Rot-blau				
aser on/off	3	Schwarz	Schalteingang, Laser in Betrieb, wenn Pin 3 mit GND verbunden ist			
lulti_in	4	Violett	Schalteingang für Triggerung, Nullsetzen/Mastern oder Teachen			
Out 1	16	Braun	Schaltausgänge, Schaltverhalten programmierbar: (NPN, PNP, Push-Pull)			
out 2	8	Weiß				
_ENC 1+	23	Weiß-grau				
_ENC 1 -	18	Grau-braun	Encodereingang	021 012 013 04 020 014 05 022 014 05 02 023 015 06		
_ENC 1+	22	Weiß-rosa	Inkrementalsignale A, B			
_ENC 1 -	19	Rosa-braun				
thernet-Schirm	13	Eth-Schirm		019 010 02 023 015 06 018 09 01 024 016 07		
X-Ethernet+	14	Weiß-grün		O24 O16 O8 O7 O17		
X-Ethernet -	10	Grün	Industrial Ethernet			
X-Ethernet+	20	Weiß-orange		24-pol. Sensorstecker,		
X-Ethernet -	11	Orange		M16, Ansicht Stiftseite		
x +	9	Grau-schwarz	Schnittstelle RS422 (32 Bit), s	symmetrisch		
x -	7	Rosa-schwarz	Rx intern mit 100 Ohm abgeschlossen max. 4 MBaud, Full-Duplex			
x +	6	Grün-schwarz				
x -	1	Gelb-schwarz				
chirm		SHLD				

Lasersicherheit

Der optoNCDT 5500 arbeitet mit einem Halbleiterlaser der Wellenlänge 670 nm (sichtbar/rot).

Die Sensoren sind in die Laserklasse 2 eingeordnet. Der Laser wird gepulst betrieben, die maximale optische Leistung ist ≤1 mW. Die Pulsfrequenz hängt von der eingestellten Messrate ab (0,25 ...

75 kHz). Die Pulsdauer der Peaks wird abhängig von der Messrate und Reflektivität des Messobjektes geregelt und kann 0,5 ... 3994.5 μs betragen.

Beachten Sie die nationalen Laserschutzvorschriften.

Beim Betrieb der Sensoren sind einschlägige Vorschriften zu beachten. Danach gilt:

- Bei Lasereinrichtungen der Klasse 2 ist das Auge bei zufälliger, kurzzeitiger Einwirkung der Laserstrahlung, d.h. Einwirkungsdauer bis 0,25 s, nicht gefährdet.
- Lasereinrichtungen der Klasse 2 dürfen Sie deshalb ohne weitere Schutzmaßnahmen einsetzen, wenn Sie nicht absichtlich länger als 0,25 s in den Laserstrahl oder in spiegelnd reflektierte Strahlung hineinschauen.
- Da vom Vorhandensein des Lidschlussreflexes in der Regel nicht ausgegangen werden darf, sollte man bewusst die Augen schließen oder sich sofort abwenden, falls die Laserstrahlung ins Auge trifft.

Laser der Klasse 2 sind nicht anzeigepflichtig und ein Laserschutzbeauftragter ist nicht erforderlich. Am Sensorgehäuse sind folgende Hinweisschilder angebracht:

⚠ VORSICHT

Laserstrahlung. Irritation oder Verletzung der Augen möglich. Schließen Sie die Augen oder wenden Sie sich sofort ab, falls die Laserstrahlung ins Auge trifft.

Laserwarnschild am Sensorgehäuse

Wenn die vorhandenen Hinweisschilder im angebauten Zustand verdeckt sind, muss der Anwender selbst für zusätzliche Hinweisschilder an der Anbaustelle sorgen.

Der Betrieb des Lasers wird optisch durch die LED am Sensor angezeigt.

Die Gehäuse der optischen Sensoren dürfen nur vom Hersteller geöffnet werden.

Für Reparatur und Service sind die Sensoren in jedem Fall an den Hersteller zu senden.

Beachten Sie nationale Vorgaben, z.B. die für Deutschland gültige Arbeitsschutzverordnung zu künstlicher optischer Strahlung - OStrV.

Empfehlungen für den Betrieb von Sensoren, die Laserstrahlung im sichtbaren oder nicht sichtbaren Bereich emittieren, finden Sie u. a. in der DIN EN 60825-1 (von 07/2022).

Montageanleitung optoNCDT 5500

Bestimmungsgemäße Verwendung

Der optoNCDT 5500 ist für den Einsatz im Industrie- und Laborbereich konzipiert. Es wird eingesetzt zur Weg-, Abstands- und Positionsmessung, sowie zur Qualitätsüberwachung und Dimensionsprüfung.

Der Sensor darf nur innerhalb der in den technischen Daten angegebenen Werte betrieben werden, siehe Betriebsanleitung. Der Sensor ist so einzusetzen, dass bei Fehlfunktionen oder Totalausfall des Sensors keine Personen gefährdet oder Maschinen und andere materielle Güter beschädigt werden. Bei sicherheitsbezogener Anwendung sind zusätzlich Vorkehrungen für die Sicherheit und zur Schadensverhütung zu treffen.

Warnhinweise

Setzen Sie sich keiner unnötigen Laserstrahlung aus.

Schalten Sie den Sensor zur Reinigung und Wartung aus.

Schalten Sie den Sensor zur Reinigung und Wartung aus, falls der Sensor in ein System integriert ist.

Vorsicht – die Verwendung von Bedienelementen oder Einstellungen oder die Durchführung von Verfahren, die nicht in der Betriebsanleitung angegeben sind, können Schäden verursachen.

Schließen Sie die Spannungsversorgung nach den Sicherheitsvorschriften für elektrische Betriebsmittel an. Versorgungsspannung darf angegebene Grenzen nicht überschreiten.

> Verletzungsgefahr, Beschädigung oder Zerstörung des Sensors.

Vermeiden Sie die dauernde Einwirkung von Spritzwasser auf den Sensor. Auf den Sensor dürfen keine aggressiven Medien (Waschmittel, Kühlemulsionen) einwirken.

> Beschädigung oder Zerstörung des Sensors

Vermeiden Sie Stöße und Schläge auf den Sensor, Sensorkabel vor Beschädigung schützen.

> Beschädigung oder Zerstörung des Systems, Ausfall des Messgerätes

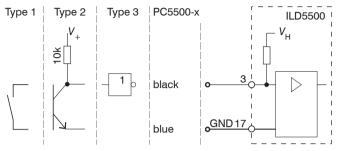
Bestimmungsgemäßes Umfeld

- Schutzart: IP67 (gilt nur bei angestecktem Sensorkabel)

Die Schutzart gilt nicht für optische Eingänge, da deren Verschmutzung zur Beeinträchtigung oder Ausfall der Funktion führt.

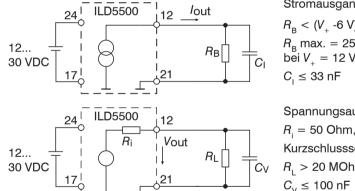
Temperaturbereich

■ Betrieb: 0 ... +50 °C
■ Lagerung: -20 ... +70 °C


Luftfeuchtigkeit: 5 ... 95 % (nicht kondensierend)

Versorgungsspannung, Nennwert: 24 V DC (12 ... 30 V, P < 5 W)

12 30 VDC	24	Sensor Pin	PC5500-x/OE Farbe	Versor- gung
†	_	24	Rot	$V_{_{+}}$
	17	17	Blau	GND

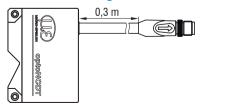

Spannungsversorgung nur für Messgeräte verwenden, MICRO-EPSILON empfiehlt die Verwendung des optional erhältlichen Netzteils PS2020 für den Sensor.

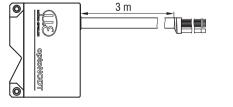
Laser einschalten

Der Laser bleibt abgeschaltet, solange nicht Pin 3 mit Pin 17 elektrisch leitend verbunden ist

Stromausgang 4 ... 20 mA oder Spannungsausgang 0 ... 5 V oder 0 ... 10 V

Stromausgang nicht dauerhaft im Kurzschlussbetrieb ohne Lastwiderstand betreiben. Dies führt zur thermischen Überlastung und zur automatischen Überlastabschaltung des Ausgangs.


Stromausgang $R_{\rm p} < (V_{\perp} - 6 \text{ V}) / 20 \text{ mA}$ $R_{\rm p}$ max. = 250 Ohm bei $V_{1} = 12 \text{ V}$ $C_1 \leq 33 \text{ nF}$


Analogausgang Pin 12, Koaxial-Innenleiter.

AGND Pin 21. Koaxialschirm

Spannungsausgang $R_{i} = 50 \text{ Ohm}, I_{max} = 5 \text{ mA},$ Kurzschlussschutz ab 7 mA R. > 20 MOhm

Steckverbindung und Sensorkabel

ILD5500 mit Pigtail ILD5500 mit offenen Enden

Unbenutzte offene Kabelenden müssen zum Schutz vor Kurzschlüssen oder Fehlfunktionen des Sensors isoliert werden.

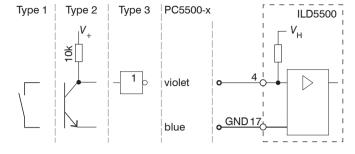
Multifunktionseingang

Der Multifunktionseingang ermöglicht die Funktionen Triggerung, Nullsetzen/Mastern, Teachen. Die Funktion hängt von der Programmierung des Eingangs ab und vom Zeitverhalten des Eingangssig-

Die Eingänge sind nicht galvanisch getrennt, die maximale Schaltfrequenz beträgt 10 kHz (bei symmetrischen Signalen).

24V-Loaik (HTL):

(max 30 V).


5V-Logik (TTL):

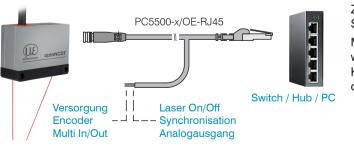
Low \leq 3 V; High \geq 8 V

Low \leq 0.8 V; High \geq 2 V

Interner Pull-up-Widerstand, ein

offener Eingang wird als High

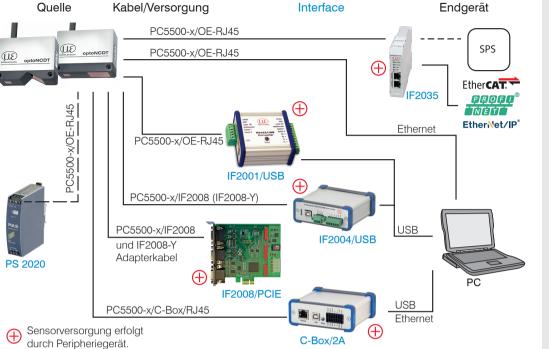
Verbinden Sie den Eingang mit GND, um die Funktion auszulösen.


RS422-Verbindung mit USB-Konverter IF2001/USB

- Z. B. für die Verbindung zwischen Sensor mit integriertem Kabel und PC. Die Leitungen müssen
- Trennen beziehungsweise verbinden Sie den Sensor mit dem USB-Konverter nur im spannungslosen Zustand.

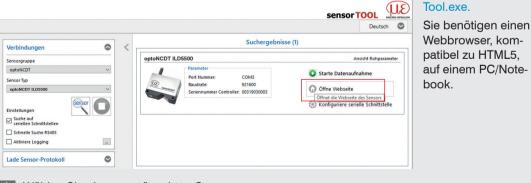
Sensor		Endgerät (Konverter)	S. C.	_	
24-pol. Kabelstecker	Sensorkabel	Typ IF2001/USB von Micro-Epsilon		24VDC	120-
V + (Pin 24)	Rot	24VDC	MICRO-EPSILON	GND Laser ON	31 -
Tx + (Pin 9)	Grau-schwarz	Rx +		Multifunction Switch 1	00
Tx - (Pin 7)	Rosa-schwarz	Rx -	RS422/USB Converter	Switch 2 Rx –	20 =-
Rx + (Pin 6)	Grün-schwarz	Tx +	Converter	Rx +	
Rx - (Pin 1)	Gelb-schwarz	Tx -	Status	Tx +	la i-
GND (Pin 17)	Blau	GND			
Laser On (Pin 3)	Schwarz	Laser ON			

Symmetrische Differenzsignale nach EIA-422, nicht galvanisch von der Versorgungsspannung getrennt. Verwenden Sie ein geschirmtes Kabel mit verdrillten Adern, z. B. PC5500-3/OE-RJ45.


Ethernet-Verbindung

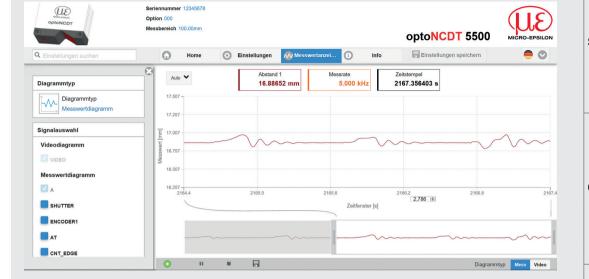
Z. B. für die Verbindung zwischen Sensor mit Pigtail und PC. Micro-Epsilon empfiehlt die Verwendung des optional erhältlichen Kabels PC5500-3/OE-RJ45 aus dem Zubehör.

Aufbau der Komponenten


Montieren Sie den Sensor und verbinden Sie die Komponenten miteinander.

Schnelleinstieg

nen Sensoren der Reihe ILD5500.


- Verbinden Sie den Sensor über Ethernet oder einen RS422-Konverter mit Das Programm einem PC/Notebook, schließen Sie die Versorgungsspannung an. sensorTOOL
- Starten Sie das Programm sensorTOOL.
- Klicken Sie auf die Schaltfläche Sensor. Das Programm sucht auf den verfügbaren Schnittstellen nach angeschlosse-

Wählen Sie einen gewünschten Sensor aus Klicken Sie auf die Schaltfläche Öffne Webseite.

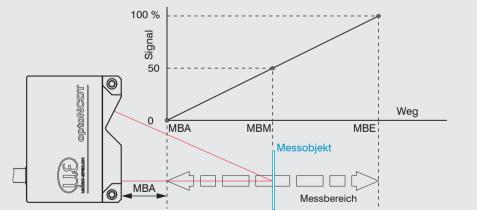
Zugriff über Webinterface

Im Webbrowser erscheinen nun interaktive Webseiten zur Programmierung des Sensors. Der Sensor ist aktiv und liefert Messwerte. Die laufende Messung kann mit den Funktionsschaltflächen im Bereich Messwertanzeige gesteuert werden.

In der oberen Navigationsleiste sind weitere Funktionen (Einstellungen, Messwertanzeige usw.) erreichbar. Das Aussehen der Webseiten kann sich abhängig von den Funktionen ändern. Jede Seite enthält Beschreibungen der Parameter und damit Tipps zum Ausfüllen der Webseite.

Messobjekt platzieren

finden Sie online


unter https://www.

micro-epsilon.de/

software/sensor-

fileadmin/download/

Platzieren Sie das Messobjekt möglichst in der Mitte des Messbereichs.

Die LED State am Sensor zeigt die Position des Messobjekts zum Sensor an.

Messrate auswählen

Gehen Sie in das Menü Einstellungen > Messwertaufnahme > Messrate.

Beginnen Sie mit einer mittleren Messrate. Bestätigen Sie mit Übernehmen

Bedien- und Anzeigeelemente

LED Farbe Bedeutung

LED	Farbe	9	Bedeutung			
	0	Aus	Laserstrahl ist abgeschaltet			
State	*	Grün	Messobjekt im Messbereich			
		Gelb	Messobjekt befindet sich in Messbereichsmitte			
	<u> </u>	Rot	Kein Abstandswert verfügbar, z.B. Messob- jekt außerhalb des Messbereichs, zu niedrige Reflexion	LEDs state output		
Output Output	*	Grün	Messwertausgang RS422 oder Ethernet aktiv, Analogausgang aus	func		
		Gelb	Schaltausgänge sind aktiv RS422, Ethernet oder Analogausgang können zugeschaltet werden. Das Webinterface kann zugeschaltet werden.	Tasten		
		Rot	Messwertausgang Strom 4 20 mA oder Spannung 0 5 V bzw. 0 10 V aktiv			
	0	Aus	Sensor aus, keine Versorgung			
Taste F	unctio	n	Sensorparametrierung während Initialisierung Sensor: Auswahl der Sch stelle und der Tastenfunktion (Mastern oder Teachen) im Messmodus: A wahl der Funktionen Presets, Mittelung und Messfrequenz			
Taste Select			Sensorparametrierung Teachen oder Mastern			

Schnittstelle auswählen

Gehen Sie in das Menü Einstellungen > Ausgänge > Datenausgabe.

Entscheidet über die genutzte Schnittstelle für die Messwertausgabe. Eine parallele Messwertausgabe über mehrere Kanäle ist nicht möglich. RS422, Ethernet und Analogausgang sind nicht gleichzeitig möglich. Bei Benutzung des Webinterface wird die Ausgabe via RS422/Ethernet abgeschaltet.

Einstellungen speichern

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG

Gehen Sie in das Menü Einstellungen > Systemeinstellungen > Laden&Speichern oder klicken Sie auf die Schaltfläche Einstellungen speichern.

Weitere Informationen zum Sensor können Sie in der Betriebsanleitung nachlesen. Diese finden Sie Online unter: https://www.micro-epsilon.de/download-file/man--optoNCDT-5500--de.pdf

Königbacher Str. 15 • 94496 Ortenburg / Deutschland Tel. +49 (0) 8542 / 168-0 • Fax +49 (0) 8542 / 168-90 info@micro-epsilon.de • https://www.micro-epsilon.de Your local contact: https://www.micro-epsilon.com/contact/worldwide/

